skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "and Oishi, Meeko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment. 
    more » « less
  2. null (Ed.)
    We present a data-driven method for computing approximate forward reachable sets using separating kernels in a reproducing kernel Hilbert space. We frame the problem as a support estimation problem, and learn a classifier of the support as an element in a reproducing kernel Hilbert space using a data-driven approach. Kernel methods provide a computationally efficient representation for the classifier that is the solution to a regularized least squares problem. The solution converges almost surely as the sample size increases, and admits known finite sample bounds. This approach is applicable to stochastic systems with arbitrary disturbances and neural network verification problems by treating the network as a dynamical system, or by considering neural network controllers as part of a closed-loop system. We present our technique on several examples, including a spacecraft rendezvous and docking problem, and two nonlinear system benchmarks with neural network controllers. 
    more » « less